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S Warren, PA Best Model: Gamma-GARMA(0,0) Weibull Model
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« With monthly means regression | - N o
_ o L | . . - Where P¥; is the transition probability of a Markov chain, with i, j = {Dry, Wet}, and
» Goal: Build a statistical model for precipitation time series * Very little autocorrelation between months k={1,2.3.... 12}, corresponding to the months of the year

* The monthly means model does a good job of modeling this structure » Time dependence between presence-absence (rain/ no rain) via Markov model

* Amount of rain is conditionally independent given rain/ no rain:

_ Warren. PA Montlv Total Precipitation * If it rains, amount is drawn independently
 They contain extreme values ) y P Warren, PA

* Challenges:

* Precipitation data have a large proportion of zeros

* May exhibit autocorrelation N

Weibull model accounts for monthly variability of the amount of rain on wet days

* Building a statistical model with all the above features can be difficult

— Warren, PA Daily Precipiaton

 \We consider two approaches
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* Generalized Autoregressive Moving Average model (Zheng et al. 2015)

* Weibull Model with Markov transitions (extending Wilks 1999)

Why Is This of Interest? o

600
I

Total Precipitation (inches)

II

|

-

4
I

—_—
Daily Precipitation (mm)
400
I

« Climate change will affect precipitation e | | | | | | |
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« Some areas will experience more severe drought, others will have more Figure 2 — Warren, PA (1897-2015)
The precipitation data is in black, with GARMA forecasts in red.

extreme rainfall

« Understanding precipitation patterns and trends may be useful for public policy Phoemxa AZ Best Model: Gamma'GARMA(1 50)
A monthly means regression model still has correlated residuals
« Useful for studying climate models Figure 3 — Warren, PA since 1893
» This model accounts for the autocorrelation that was seen in the data The precipitation data is in black, and a Welibull simulation in red.
Data Phoenix, AZ Montly Total Precipitation Phoenlx,AZ

Markov model accounts for variability throughout the year of transitions
between rain/ no rain

* Precipitation data obtained from the NOAA Climate Data Online database

Phoenix, AZ Daily Precipiaton

 Focus here on Warren, PA and Phoenix, AZ

GARMA Model

 Time seriesdata: Y,, Y,, ..., Y

* It uses a log -link function:
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Figure 3 — Phoenix, AZ (1948-2015)
The precipitation data is in black, with GARMA forecasts in red.

GARMA Discussion

- We allow for a seasonal effect via including a monthly term: « The GARMA models do a good job at accounting for autocorrelation
 Fail to account for zeros in data and extreme values Figure 4 — Phoenix, AZ since 1893

* log(Yy) = @ log(Yy) + e

* €4, 8e,, ..., e; are the error terms

* log(Yy) = py + @ log(Yy) + e - -9l | | o
The precipitation data is in black, and a Welibull simulation in red.

Weibull Discussion

« Weibull model with Markov transitions accounts for zeros and extremes
Refe rences « Seasonal models account for variability in distribution of positive data
* Future: 1) Flexible model dependence in amount of rain
2) Interpret model fit

 We use Markov Chain Monte Carlo to estimate the parameters
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