

Summary

PENNSTATE

1 8 5 5

- Goal: Build a statistical model for precipitation time series
- Challenges:
 - Precipitation data have a large proportion of zeros
 - They contain extreme values
 - May exhibit autocorrelation
- Building a statistical model with all the above features can be difficult
- We consider two approaches
 - Generalized Autoregressive Moving Average model (Zheng et al. 2015)
 - Weibull Model with Markov transitions (extending Wilks 1999)

Why Is This of Interest?

- Climate change will affect precipitation
- Some areas will experience more severe drought, others will have more extreme rainfall
- Understanding precipitation patterns and trends may be useful for public policy
- Useful for studying climate models

Data

- Precipitation data obtained from the NOAA Climate Data Online database
- Focus here on Warren, PA and Phoenix, AZ

GARMA Model

- Time series data: $Y_1, Y_2, ..., Y_T$
- $Y_t \sim \text{Gamma}(cY_{t-1}^{\varphi d}, cY_{t-1}^{\varphi (d-1)})$ where c, φ , d are parameters
- It uses a log -link function:
 - $\log(Y_t) = \phi \log(Y_t) + e_t$
 - e_1, e_2, \dots, e_T are the error terms
- We allow for a seasonal effect via including a monthly term:
 - $\log(Y_{t}) = \mu_{t} + \phi \log(Y_{t}) + e_{t}$
- We use Markov Chain Monte Carlo to estimate the parameters

an NSF-sponsored research network for

Modeling and Inference for Precipitation Time Series Nicholas Vasko, Penn State, SCRiM Summer Scholars Program

Adviser: Dr. Murali Haran

Warren, PA Best Model: Gamma-GARMA(0,0)

- With monthly means regression
- Very little autocorrelation between months
- The monthly means model does a good job of modeling this structure

Figure 3 – Phoenix, AZ (1948-2015) The precipitation data is in black, with GARMA forecasts in red.

GARMA Discussion

- The GARMA models do a good job at accounting for autocorrelation
- Fail to account for zeros in data and extreme values

References

• Zheng.T., et al., Generalized ARMA models with martingale difference errors. Journal of Econometrics (2015). <u>http://dx.doi.org/10.1016/j.jeconom.2015.03.040</u> • Wilks, D.S. "Interannual Variability and Extreme-value Characteristics of Several Stochastic Daily Precipitation Models." Interannual Variability and Extreme-value

Forest Meteorology, 12 Mar. 1999. Web. 21 Mar. 2016.

The Pennsylvania State University · Department of Statistics · The Network for Sustainable Climate Risk Management

Characteristics of Several Stochastic Daily Precipitation Models. Agricultural and

Weibull Model

- $Y_t \sim Weibull(\lambda, k)$ with probability P_{ii}^k
- $k=\{1,2,3,\ldots,12\}$, corresponding to the months of the year
- Where P^k_{ii} is the transition probability of a Markov chain, with i, j = {Dry, Wet}, and
- Time dependence between presence-absence (rain/ no rain) via Markov model
- Amount of rain is conditionally independent given rain/ no rain: • If it rains, amount is drawn independently Warren, PA

Figure 3 – Warren, PA since 1893 Phoenix, AZ

between rain/ no rain

Figure 4 – Phoenix, AZ since 1893 The precipitation data is in black, and a Weibull simulation in red.

Weibull Discussion

- Future: 1) Flexible model dependence in amount of rain 2) Interpret model fit

Acknowledgements

This work was supported by the National Science Foundation through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507.

• Weibull model accounts for monthly variability of the amount of rain on wet days

The precipitation data is in black, and a Weibull simulation in red.

• Markov model accounts for variability throughout the year of transitions

 Weibull model with Markov transitions accounts for zeros and extremes Seasonal models account for variability in distribution of positive data