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1 Introduction

The purpose of this document is to present statistical background and equations for the sepa-
rable emulator recently developed in our research group and implemented in R programming
language. The discussion is tailored to a specific example of Greenland Ice Sheet (GIS) mass
anomaly output from ice sheet model SICOPOLIS.

2 Emulator Equations

2.1 Emulator Equations

Let yi,j ∈ R be physical model output of at parameter setting θi and time tj. In our case
this is SICOPOLIS model output of GIS ice mass anomaly (Gt). The time settings form
an n-dimensional vector t = (t1, ..., tn)

T . Each parameter setting is a m-dimensional vector:
θi = (θ1,i, ..., θm,i). In out case, m=5. The parameter settings θi form a p × m parameter
matrix Θ. Then yj = (y1,j, ..., yp,j)

T is a p-dimensional vector of model outputs for all p
parameters for time tj. Consecutively, the stacked pn×1 column matrix of all model output
for times from 1 through n is Y = (y1

T , ...,yn
T )T . Associated with Y is the pn × (m + 1)

design matrix D. Its columns are the parameter values and time values of the ensemble. It
is calculated as:

D =




1
1
...
1


n×1

⊗Θ t⊗


1
1
...
1


p×1

 (1)

We model the SICOPOLIS output as a Gaussian process such that:

Y ∼ N(µβ,Σ(ξy)), (2)

where µβ is a mean function that is linear in time, and ξy is a vector of covariance matrix
parameters. The mean for parameter setting θi and time j is µi,j. Specifically, µβ = Xβ
where β is a column matrix of regression coefficients β and X is a matrix of covariates. It
includes the column of ones (always the first column), and can also have columns of the
design matrix D. In our specific case, we are are using the mean function that is linear in
time. Hence, β has dimension of 2× 1, and X is pn× 2. It is calculated as:
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X =


1 t1
1 t2
...

...
1 tn


n×2

⊗


1
1
...
1


p×1

(3)

Under the assumption of separability, the covariance matrix Σ can be represented as a
Kroenecker product of a separate covariance matrix in the time Σt and in parameters Σθ.

Σ = Σt ⊗ Σθ. (4)

The time covariance matrix Σt (n × n) has AR(1) covariance. To reduce identifiability
issues, we assume that the AR(1) process has innovation standard deviation of 1. Specifically,
its (j, k) element is (Shumway and Stoffer, 2006):

ςt,jk =
ρ|tj−tk|

1− ρ2
. (5)

where ρ is the lag-1 autocorrelation parameter.
The parameter covariance Σθ = [ςθ,ij] (p × p) is assumed to be squared exponential. Its

(i, j) element is:

ςθ,ij = κ exp(−
m∑
k=1

|θk,i − θk,j|2

ϕ2
k

) + ζ1(i = j). (6)

Here κ is partial sill, ζ is nugget, and ϕk is range parameter for kth model input parameter.
The range parameters form a vector ϕ = ϕ1, ..., ϕm.

Specifically, the total covariance matrix (np× np) is constructed as:

Σ =

 ςt,11Σθ · · · ςt,1nΣθ
...

. . .
...

ςt,n1Σθ · · · ςt,nnΣθ

 (7)

Hence, the covariance parameters are ξy = (ρ, κ,ϕ, ζ)T . The emulator parameters are ψ
=(βT , ξy

T )T . The number of emulator parameters will be different depending on the number
of model parameters used in the ensemble, and the number of covariates. In the SICOPOLIS
case, this is a total of 10 parameters.

2.2 Estimating Emulator Parameters

The log-likelihood for the model output Y given the emulator parameters ψ can be written
as (Rasmussen and Williams, 2006):

lnL(Y|ψ) = −1

2
(Y − µβ)

TΣ−1(Y − µβ)−
1

2
ln |Σ| − np

2
ln 2π. (8)

The emulator parameters ψ can be found my maximizing this likelihood over a reasonable
parameter range using one of standard optimization routines. The regression parameters β
can either be fixed, or optimized along with other emulator parameters.
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2.3 Prediction

We are interested in predicting model output for all times for a given parameter vector θ∗.
We denote this output, an n-dimensional vector, by y∗ = (yθ∗,1, ..., yθ∗,n)

T . Associated with
the prediction points is an n×1 prediction design matrix D∗ which is constructed in a similar
manner to D. Likewise, matrix X∗ consists of covariates evaluated at prediction points. It
is constructed similarly to X. To give an example, in the SICOPOLIS case:

X∗ =


1 t1
1 t2
...

...
1 tn


n×2

(9)

The prediction is a multivariate normal distribution (Rasmussen and Williams, 2006):

y∗ ∼ N(µ∗
β,Σ

∗) (10)

Here:
µ∗

β = X∗β + (Σt ⊗ Σθ∗θ)Σ
−1(Y − µβ), (11)

where Σθ∗θ is a 1 × p cross-covariance matrix between the prediction parameter setting,
and all the ensemble parameter settings, calculated using the same covariance function as
for Σθ.

The predictive covariance (an n× n matrix) is given by:

Σ∗ = (κ+ ζ)Σt − Σt ⊗ Σθ∗θΣ
−1
θ ΣT

θ∗θ (12)

2.4 Computational Technique

Computational techniques can be used to simplify computations of

1. Likelihood, equation 8. Construct a p× n matrix C where Y − µβ = vec(C). The vec
operation stacks the columns of a matrix into a column vector, from left to right. Then:

(Y − µβ)
TΣ−1(Y − µβ) = sum

[
C ∗ (Σ−1

θ CΣ−1
t )

]
(13)

2. Equation 11:

µ∗
β = X∗β + (In×n ⊗ Σθ∗θΣ

−1
θ )(Y − µβ). (14)
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