

PennState



- policy and water resource allocation



- Day 3: Larger values due to 'Rain' on Day 2

## Contact

Nick Vasko The Pennsylvania State University, Network for Sustainable Climate Risk Management, Department of Statistics Email: <u>nick7td@gmail.com</u>

# Acknowledgements

This work was supported by the National Science Foundation through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

# **Comparison of Hidden Markov Precipitation Models Using the Continuous Ranked Probability Score**

Nick Vasko, Ben Lee, and Murali Haran Department of Statistics, The Pennsylvania State University, and Network for Sustainable Climate Risk Management

## References

1. Wilks, D. S. (1999). Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agricultural and Forest *Meteorology*, *93*(3), 153-169.

2. Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 59-378. 3. Grimit et al. (2006). The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quarterly Journal of the Royal Meteorological Society, 132(621C), 2925-2942.

4. Gneiting et al. (2008). Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. Test, 17(2). 5. Ailliot et al. (2015). Stochastic weather generators: an overview of weather type models. Journal de la Société Française de Statistique, 156(1), 101-113.



## **Interpretation of Results** Markov Transition Probabilities for Winter in Warren, PA Probability of Staying at 'Rain' State 62.7% 47.8% Probability of Moving Rain to Next State 37.3% **Figure 4.** Hidden Markov Model for rainfall in Warren, PA during winter.

More likely that the day following a 'Rain' day it will also Rain', but it is about an equal

| of Best Models: Warren, PA  |      |      |
|-----------------------------|------|------|
| CRPS                        | MSE  | BIC  |
| 36.7214                     | 8210 | 8120 |
| 37.1062                     | 8277 | 7898 |
| of Best Models: Phoenix, AZ |      |      |
| CRPS                        | MSE  | BIC  |
| 7.1050                      | 1399 | 8298 |
| 7.1317                      | 1405 | 8290 |
| 7.1926                      | 1466 | 7860 |

## **Conclusion and Future Work**

Hidden Markov Models with Gamma or Weibull distributions

Can improve models by conditioning on rain/no rain the day before

• CRPS is used as a comparison metric for predictive distributions

CRPS compares predictive CDF with observed CDF

More precise models that better represent observations