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• Goal: Compare rainfall models and study model selection techniques 

• Challenges:  

• Precipitation data have a large proportion of zeros  and extreme values 

• May exhibit autocorrelation 

• Building a statistical model with all the above features can be difficult 

• Features of Our Best Models:  

• Seasonal Hidden Markov Model (HMM) 

• Gamma or Weibull distributions conditional on the day before 

• We recommend Continuous Ranked Probability Score (CRPS) for model 

choice instead of more popular Bayesian Information Criteria (BIC) 

Summary 

Why is This of Interest 

• Continuous Ranked Probability Score (CRPS) 

• Generalization of Absolute error  

• Penalizes bias and incorrect variance of predictive distributions 

• Bayesian Information Criteria (BIC) 

• Rewards model fit based on likelihood 

• Penalizes for number of parameters 

Model Choice 

• Conclusions: 

• Hidden Markov Models with Gamma or Weibull distributions 

simulated precipitation data well 

• Can improve models by conditioning on rain/no rain the day before 

• CRPS is used as a comparison metric for predictive distributions 

• CRPS compares predictive CDF with observed CDF 

• CRPS leads to models with lower MSE 

• More precise models that better represent observations 

• Future Work: 

• Add atmospheric variables to the model 

• HMM that changes through time 

• Add spatial data 

Conclusion and Future Work 

CRPS MSE BIC 

Seasonal 2-stage  

HMM – Gamma 
36.7214 8210 8120 

Non-seasonal 2-stage  

HMM - Gamma 
37.1062 8277 7898 

• Climate change will affect precipitation 

• Some areas will experience more severe drought, others extreme rainfall 

• Understanding precipitation patterns and trends may be useful for public 

policy and water resource allocation 

• Precipitation data obtained from NOAA Climate Data Online database 

• Focus here on Warren, PA and Phoenix, AZ 

• Hidden Markov Model (HMM) 

• System is a Markov process with hidden unobserved states 

• States are not directly observed 

• Model Approach for Precipitation 

• HMM has Ϯ states: ͚‘aiŶ͛ / ͚No ‘aiŶ͛ 
• If ͚‘aiŶ͛: Data folloǁs Gaŵŵa oƌ Weiďull distƌiďutioŶ 

• DistƌiďutioŶ ĐoŶditioŶed oŶ ͚‘aiŶ͛ / ͚No ‘aiŶ͛ day ďefoƌe 

• Warren Best Model:  

• Seasonal 2-stage (rain/no rain) Hidden Markov Model (HMM) 

• Gamma distribution for amount of rain, given greater than zero 

• Phoenix Best Model: 

• Seasonal 2-stage (rain/no rain) HMM with Weibull distribution 

• Distributions conditioned on rain/no rain day before 

• Model selection  

• Minimizing CRPS leads to more precise and parsimonious models 

• Minimizing BIC leads to more complicated models 

Results 
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Models and Data 

Figure 2. Simulations from the best models (red) capture the zeroes well along with 

extreme values in the Warren and Phoenix rainfall datasets (black). 
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Markov Transition Probabilities for Winter in Warren, PA 

Figure 4. Hidden Markov Model for rainfall in Warren, PA during winter.  

Moƌe likely that the day folloǁiŶg a ͚‘aiŶ͛ day it ǁill also ‘aiŶ ,͛ ďut it is aďout aŶ eƋual 
ĐhaŶĐe of ͚‘aiŶ͛ oƌ ͚No ‘aiŶ͛ folloǁiŶg a ͚‘aiŶ͛ day. 

Comparison of Best Models: Warren, PA 

CRPS MSE BIC 

Seasonal 2-stage  

HMM – Weibull, conditioned 

on day before 

7.1050 1399 8298 

Seasonal 2-stage  

HMM - Weibull 
7.1317 1405 8290 

Non-seasonal 3-stage  

HMM – Weibull, Weibull 

combination 

7.1926 1466 7860 

Comparison of Best Models: Phoenix, AZ 

Interpretation of Results 

Best model by scoring metric  
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Figure 1. Illustration of Hidden Markov Model and conditional distributions 

• Day Ϯ: “ŵalleƌ ǀalues due to ͚No ‘aiŶ͛ oŶ Day ϭ 

• Day ϯ: Laƌgeƌ ǀalues due to ͚‘aiŶ͛ oŶ Day Ϯ 

Conditional 

Distribution (Rain) 

0           40           80 
Rainfall (mm) 

Conditional 

Distribution (No Rain) 

0           40           80 
Rainfall (mm) 


