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•  Climate change will affect precipitation patterns in certain areas differently 
•  Some areas will experience more severe drought 
•  Others will have more extreme rainfall 
 
Table 1 
•  Precipitation amounts differ by location and season of the year 
•  Variability is also dependent on location 

•  Precipitation data obtained from the NOAA Climate Data Online database 
•  The GARMA model is an extension of the more popular ARMA model 
•  It allows for non-gaussian error structure in the model’s residuals.  
•  A Gamma-GARMA model is used for precipitation due to the distribution 
•  Parameters were estimated using Markov Chain Monte Carlo Methods 
•  R software was used for the analysis 

•  This study analyzes monthly precipitation for Phoenix, AZ and Warren, PA 
•  These were chosen for their differences in climate patterns 
•  Normal ARMA models break down for precipitation because non-gaussian and 

must be positive 
•  A Generalized Autoregressive Moving Average model is used instead 
•  The GARMA model works well for capturing the mean structure of precipitation, 

but breaks down for the conditional variance 

Data and Methodology 

Background and Exploratory Data Analysis 

Summary 

Discussion/ Future Work 
•  The Gamma-GARMA models do a good job at accounting for autocorrelation 
•  Mean values for these precipitation data are modeled well 
•  However, the models seem to break down when it comes to modeling the 

conditional variance 
•  Future work on modeling this could involve using a GARCH model  
•  Looking into dry and wet spells at each of these locations, as well as others 

across the United States 
•  From this analysis, future work will focus on prediction over the next century  
•  Unusual dry periods are of specific importance because:  

•  Changes in precipitation may cause problems with water supply availability 
•  Water supplies may run out in an extended extreme drought 
•  This may cause problems with people’s health and growing crops 

 

•  For a Gamma-GARMA (1,0) model we have the following 
•  A time series {Yt}, for t = {1,..T}, defined by three parameters 
•  Yt ~ Gam(cµt

d, cµt
d-1), 

•  It uses a link function g such that,  
•   g(µt) = v + φ g(yt),  
•  Where g(yt) = log(yt) 

 

GARMA Model Definition  
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Simulation Study 
•  Here 500 random time series were drawn from a GARMA model  
•  The true parameters were chosen for similarity to actual data 
•  They were v = 0, c = 1,  d = 0, φ = 0.3 
•  The rjags package in R was used to estimate the parameters  
•  The results show that the estimates performed significantly well for the data 
•  For c, d, and φ, the true value was contained in 96.6%, 94.8%, and 96.4% of 

respective critical intervals 
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Preliminarily Results  
•  Warren, PA and Phoenix, AZ have very different characteristics 
•  Monthly means regression models were considered to model seasonality 
•  The best regression models were determined based on the highest r2 values 
•  The best model was based on whether the residuals were uncorrelated 
•  Also, whether one-step ahead forecasts fit the data well 
 Warren, PA 

•  Best model: Gamma-GARMA(0,0) with monthly means regression  
•  Very little autocorrelation between months  
•  The monthly means model does a good job of modeling this structure 
•  This model has non-gaussian error structure that is uncorrelated 

Phoenix, AZ 
•  A monthly means regression model still has correlated residuals 
•  A Gamma-GARMA(1,0) model was determined to be a best fit 
•  This model accounts for the autocorrelation that was seen in the data 
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Figure 1 
The three probability plots above represent the range of probabilities for each 
parameter estimate. The true value is in red.  

Figure 2 – Warren, PA (1897-2015) 
The precipitation data is in black, with GARMA forecasts in red.  

Figure 3 – Phoenix, AZ (1948-2015) 
The precipitation data is in black, with GARMA forecasts in red.  


