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Summary

« This study analyzes monthly precipitation for Phoenix, AZ and Warren, PA

* These were chosen for their differences in climate patterns

 Normal ARMA models break down for precipitation because non-gaussian and
must be positive

* A Generalized Autoregressive Moving Average model is used instead

« The GARMA model works well for capturing the mean structure of precipitation,
but breaks down for the conditional variance

Background and Exploratory Data Analysis

« Climate change will affect precipitation patterns in certain areas differently
* Some areas will experience more severe drought
* Others will have more extreme rainfall

Table 1
* Precipitation amounts differ by location and season of the year
» Variability is also dependent on location

Mean Annual | Season of Max | Season of Min .
: . Ratio of
Location Precipitation Average Average :
. e e Max / Min
(in.) Precipitation | Precipitation
Phoenix, AZ 7.417 Winter Spring 1.91
Warren, PA 43.684 Summer Winter 0.79

Data and Methodology

* Precipitation data obtained from the NOAA Climate Data Online database
« The GARMA model is an extension of the more popular ARMA model

+ [t allows for non-gaussian error structure in the model’s residuals.

« A Gamma-GARMA model is used for precipitation due to the distribution

« Parameters were estimated using Markov Chain Monte Carlo Methods

* R software was used for the analysis

GARMA Model Definition

For a Gamma-GARMA (1,0) model we have the following
A time series {Y,}, for t = {1,..T}, defined by three parameters
Y, ~ Gam(cp?, cu?),
It uses a link function g such that,
* 9(Hy) =V +oglyy),
* Where g(y;) = log(y;)
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Simulation Study

* Here 500 random time series were drawn from a GARMA model

* The true parameters were chosen for similarity to actual data

 Theywerev=0,c=1,d=0,90=0.3

* The rjags package in R was used to estimate the parameters

* The results show that the estimates performed significantly well for the data

 For c, d, and o, the true value was contained in 96.6%, 94.8%, and 96.4% of
respective critical intervals
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Figure 1
The three probability plots above represent the range of probabilities for each
parameter estimate. The true value is in red.

Preliminarily Results

« Warren, PA and Phoenix, AZ have very different characteristics

* Monthly means regression models were considered to model seasonality

« The best regression models were determined based on the highest r? values
* The best model was based on whether the residuals were uncorrelated

* Also, whether one-step ahead forecasts fit the data well

Warren, PA

« Best model: Gamma-GARMA(0,0) with monthly means regression

* Very little autocorrelation between months

 The monthly means model does a good job of modeling this structure
« This model has non-gaussian error structure that is uncorrelated
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Figure 2 — Warren, PA (1897-2015)
The precipitation data is in black, with GARMA forecasts in red.

Phoenix, AZ

* A monthly means regression model still has correlated residuals
A Gamma-GARMA(1,0) model was determined to be a best fit
* This model accounts for the autocorrelation that was seen in the data
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Figure 3 — Phoenix, AZ (1948-2015)
The precipitation data is in black, with GARMA forecasts in red.

Discussion/ Future Work

« The Gamma-GARMA models do a good job at accounting for autocorrelation
« Mean values for these precipitation data are modeled well
* However, the models seem to break down when it comes to modeling the
conditional variance
* Future work on modeling this could involve using a GARCH model
« Looking into dry and wet spells at each of these locations, as well as others
across the United States
* From this analysis, future work will focus on prediction over the next century
« Unusual dry periods are of specific importance because:
« Changes in precipitation may cause problems with water supply availability
« Water supplies may run out in an extended extreme drought
« This may cause problems with people’s health and growing crops
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