

Introduction

Motivation

- Tropical cyclones (TCs) can be some of the most costly natural disasters in the world
- These storms present a danger throughout the entire North Atlantic
- Storm surge is a particularly deadly characteristic of TCs

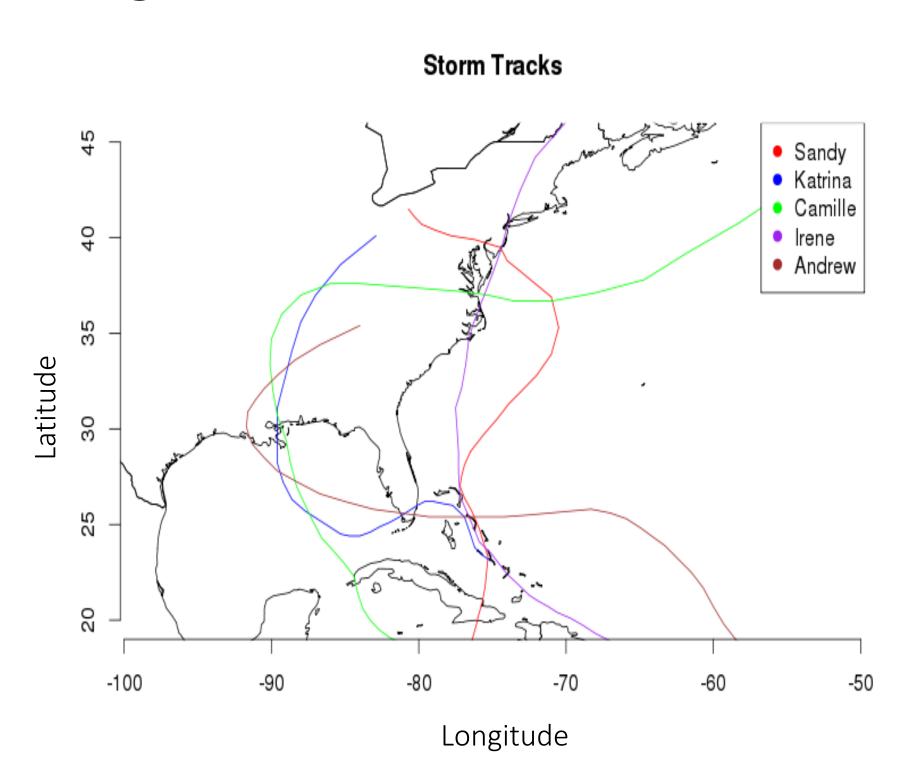

hoto courtesy of Kathy Anderson, The Times-Picayune

Photo courtesy of Xinhua/ Landov, Barcroft Mec

Goal: Compare observational record with climate model results in Reed et al¹ to see if the same trends are occurring

Methods

- Used the NOAA Best Tracks Dataset²
 - Wind, pressure, radius of maximum wind (RMW), latitude, longitude
- Worked with the SurgeDat Database³ o TC surge and storm tide
- Conducted a Principal Component Analysis of TC characteristics to find which affected storm tide and surge the most

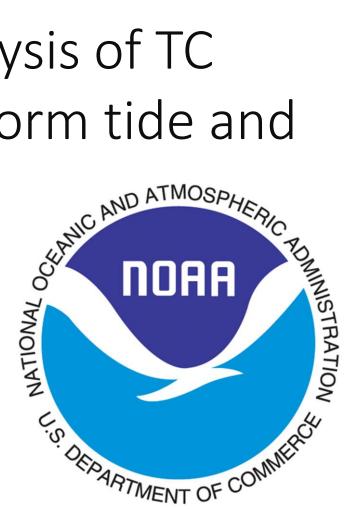
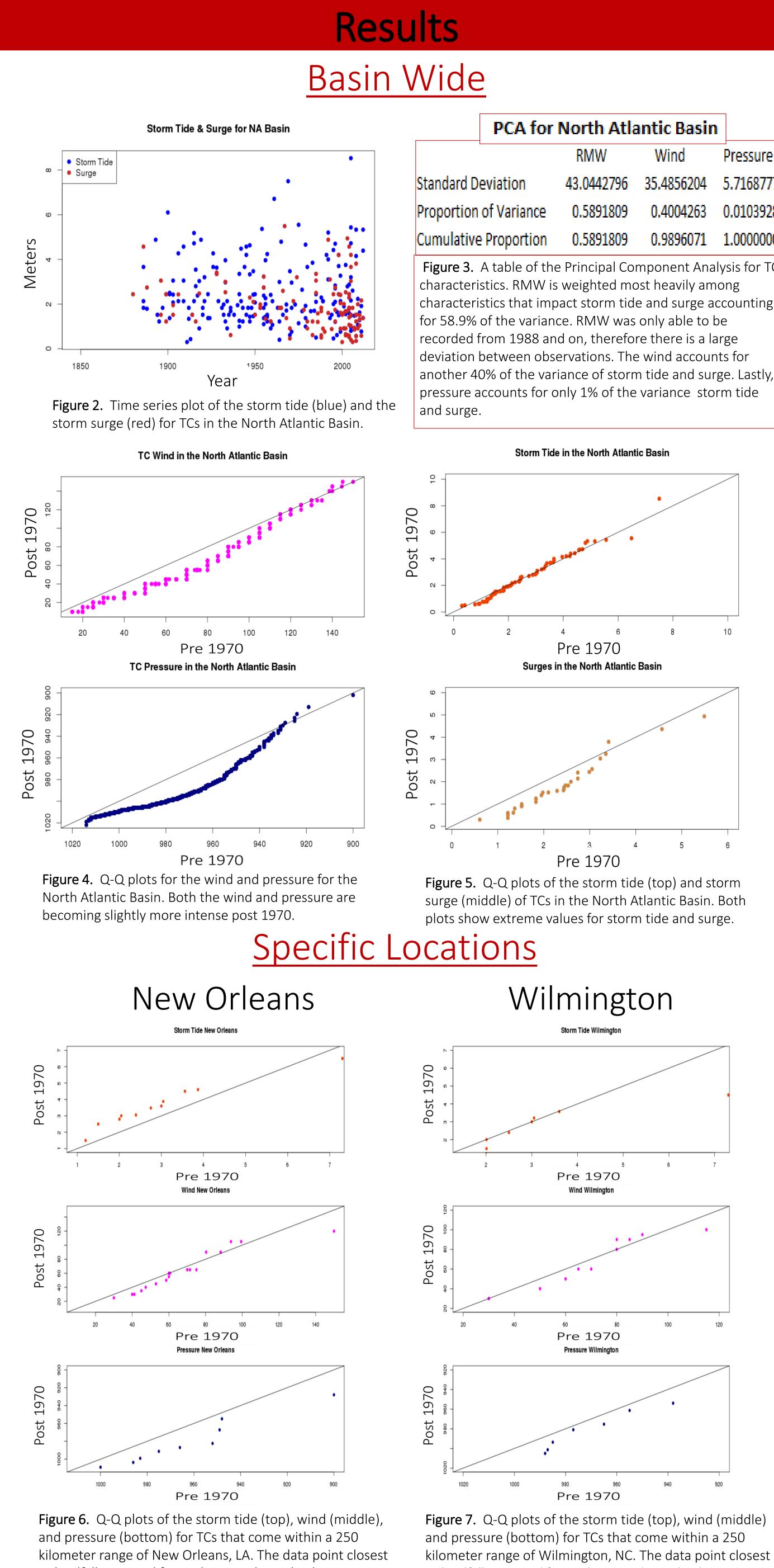



Figure 1. The path of a TC can be created on a map by using latitude and longitude points that are taken every six hours from the NOAA Best Tracks Dataset. On the left is a map with the storm track of superstorm Sandy (red) and hurricanes Katrina (blue), Camille (green), Irene (purple), and Andrew (brown). This can be done for any storm within NOAA Best Tracks Dataset in the North Atlantic Basin.

The Impact of Observed Tropical Cyclone Characteristics on Storm Surge Heights for the U.S. Atlantic & Gulf Coasts Elijah Laue^{1,2}, Andra Reed³ PennState ¹Department of Physics and Astronomy, Dickinson College, Carlisle PA, ²SCRiM Summer Scholars Program, ³Department of Meteorology, Penn State University, State College, PA

to landfall was used for each storm dating back to 1850 in order to obtain TC characteristics right before the storm hit the coast.

S				
de				
PC	CA for	North Atla	antic Basir	1
		RMW	Wind	Pressure
ard Deviation		43.0442796	35.4856204	5.71687773
ortion of Variance		0.5891809	0.4004263	0.01039287
lative Proportion		0.5891809	0.9896071	1.00000000
re 3. A table of the Principal Component Analysis for TC acteristics. RMW is weighted most heavily among acteristics that impact storm tide and surge accounting 8.9% of the variance. RMW was only able to be rded from 1988 and on, therefore there is a large ation between observations. The wind accounts for				

nother 40% of the variance of storm tide and surge. Lastly,

to landfall was used for each storm dating back to 850 in order to obtain TC characteristics right before the storm hit the coat.

- completed
- Since RMW values were recorded from 1988 onward, it is difficult to provide an accurate analysis of RMW
- Sea level rise is not accounted for in the storm tide and surge, therefore even a slight rise in the most severe events could have catastrophic effects
- to work with
- Using tide gauge data
- changed in the North Atlantic Basin

	Ack
•	This work was supported by the National (SCRiM) under NSF cooperative agreemer Any opinions, findings, and conclusions or necessarily reflect the views of the Nation
2. 3.	Reed, Andra J., Michael E. Mann, Kerry A. E "Increased Threat of Tropical Cyclones and <i>National Academy of Sciences Proc Natl Ac</i> NOAA Best Tracks Dataset obtained from <u>h</u> SurgeDat Database obtained from <u>http://su</u> act: Elijah Laue (lauee@dickinson.edu)

Discussion

Data Availability

Along with New Orleans and Wilmington, New York was a site of interest, but with lack of data in the observational record no effective analysis could be

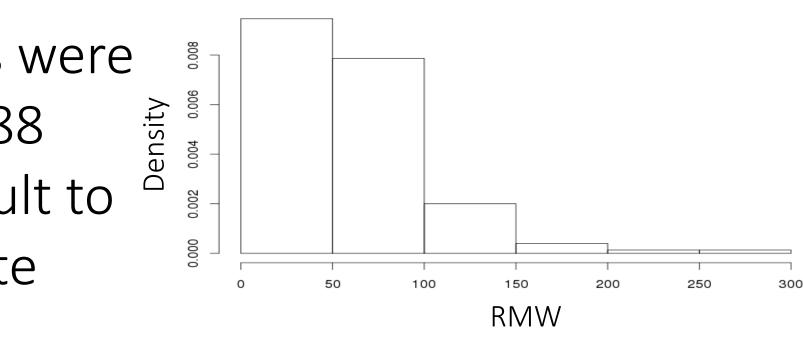


Figure 8. A histogram of the RMW values for TCs in the North Atlantic Basin.

Conclusions

The observational record is consistent with the climate model results found in Reed et al, (2015)¹

 \blacktriangleright Most intense storms in the tail are become more intense in the modern time period > PCA of the observational results agree with the model results indicating that variance in storm surge is primarily from RMW, an indicator of storm size, and secondarily from wind, an indicator of storm intensity

Future Work

Expanded Best Tracks Dataset would include more data

Incorporate sea level rise to see how flood heights have

nowledgements

Science Foundation through the Network for Sustainable Climate Risk Management nt GEO-1240507. r recommendations expressed in this material are those of the author(s) and do not

nal Science Foundation. References

Emanuel, Ning Lin, Benjamin P. Horton, Andrew C. Kemp, and Jeffrey P. Donnelly. Coastal Flooding to New York City during the Anthropogenic Era." *Proceedings of the cad Sci USA* 112.41 (2015): 12610-2615. Web. http://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data

urge.srcc.lsu.edu/data.html

