

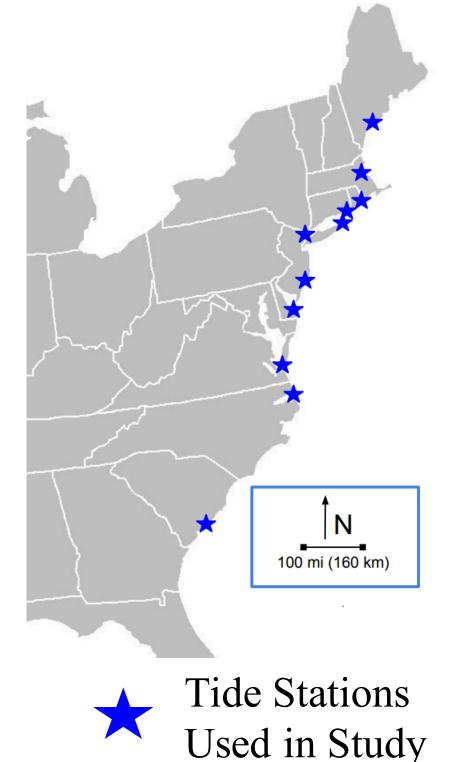
Alexandra Klufas¹, Tony Wong², Klaus Keller³ aklufas@wellesley.edu

1. Introduction

- Across the East Coast of the United States, flooding is a persistent threat to coastal communities
- With a predicted increase in sea level over the next century, risk analysis risk
- of coastal flooding is important to assessing possible future economic loss • Extreme value theory is a way to model the statistics of extreme events, such as coastal flooding
- Non-stationary modeling of storm surge levels incorporates changing temperature
 - These models are commonly dismissed because they predict larger intervals of future storm surge

2. Methods

2.1 Observational Data



Tide Station	Observational Record (Years)
Atlantic City, NJ	103
Boston	93
Charleston, SC	93
Chesapeake Bay, VA	39
Duck Pier, NC	36
Lewes, DE	57
Montauk, NY	55
Newport, RI	84
New London, CT	76
New York City	94
Portland, ME	104

Tide Stations Used in Study

2.2 Statistical Modeling of Extreme Storm Surges

- Generalized Extreme Value (GEV) Distribution
- Limiting distribution for a series of block maxima
- Three parameters influence density and distribution functions
- μ the location of the mean of the distribution curve
- σ the width of the distribution curve
- ξ the thickness of the tails of the distributions curve
- Density function

$$f(x \mid \mu, \sigma, \xi) = 1/\sigma z(x)^{\xi+1} e^{-z(x)} \qquad z(x) = \begin{cases} (1 + \xi \left(\frac{x-\mu}{\sigma}\right))^{-1} \\ e^{-\frac{x-\mu}{\sigma}} \end{cases}$$

• Non-Stationarity

- Increasing global temperatures will increase the number of stronger storms which include larger storm surges
- We focus on the upper tail of the GEV, the probability that a flood will overtop the effective height
- We use New London, CT, as a test case
- In this community, floods over 2.85 m cause damage

Model Name	Non-Stationary Parameters	Estimated Parameters	 Candidate Model candidate model range of free pa analysis. Using we study how medded to estime
ST	None	μ ₀ , σ ₀ , ξ ₀	
NS1	μ	$\mu_0, \mu_1, \sigma_0, \xi_0$	
NS2	μ, σ	$\mu_0, \mu_1, \sigma_0, \sigma_1, \xi_0$	
NS3	μ, σ, ξ	$\mu_0, \mu_1, \sigma_0, \sigma_1, \xi_0, \xi_1$	heights.

Evaluating the Sensitivity of Flood Return Levels to Data Length by Maximum Likelihood Estimation

Number of Years Used	
91	
91	
89	
39	
33	
53	
38	
90	
66	
68	

 $1/\xi$ $if \xi \neq 0$ $if \xi = 0$

 $\mu(t) = \mu_0 + \mu_1 T(t)$ $\sigma(t) = e^{\sigma_0 + \sigma_1 T(t)}$ $\xi(t) = \xi_0 + \xi_1 T(t)$

> odels. Our els provide a arameters for these models, much data is nate storm surge

2. Methods (cont.)

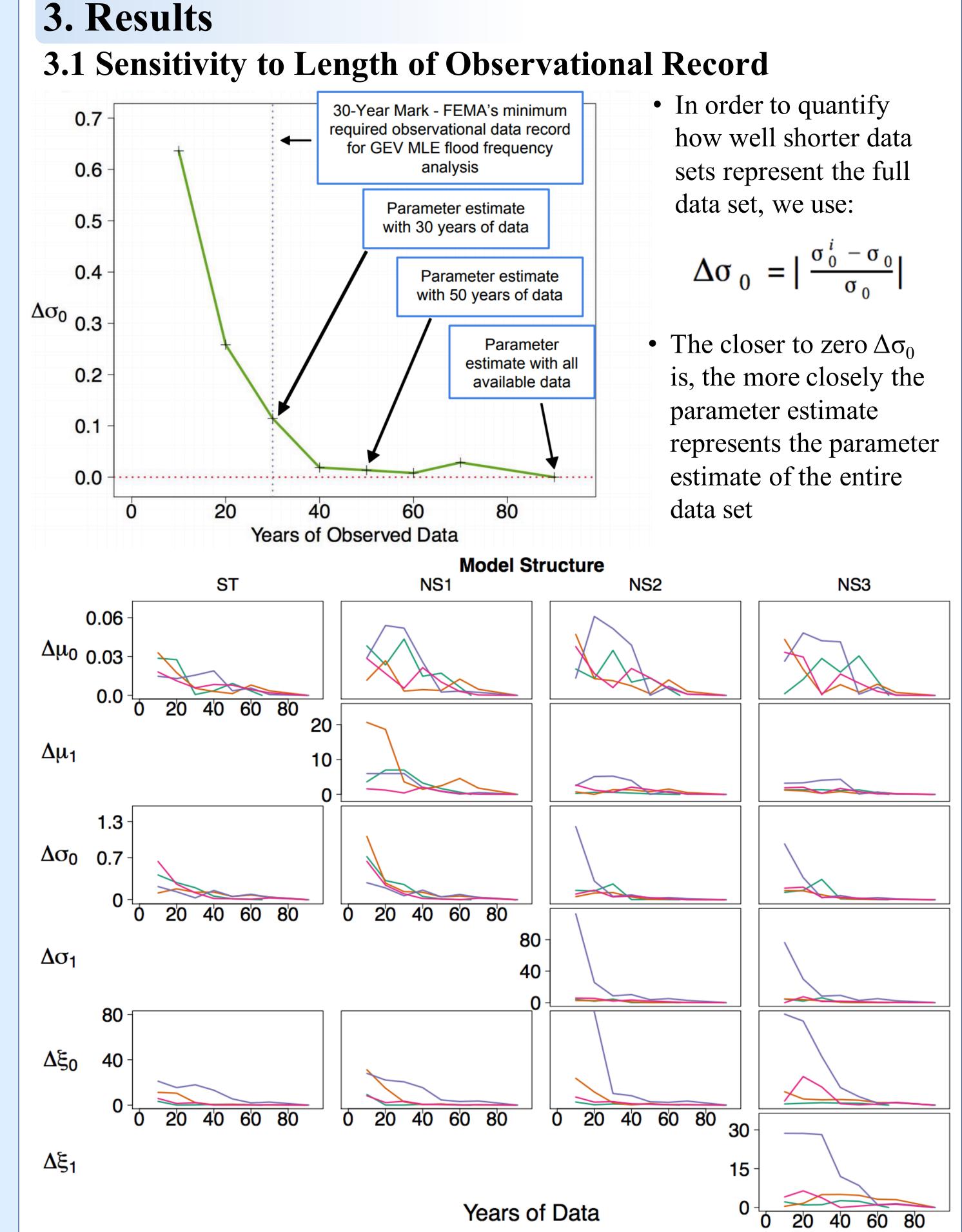
2.3 Bayesian Calibration

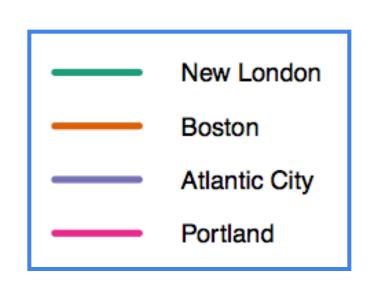
• We use the likelihood function,

 $f(x^{i}|\mu^{i},\sigma^{i},\xi^{i}) = \prod_{i=1}^{n} \frac{1}{\sigma^{i}} z(x^{i})^{\xi^{i}+1} e^{-z(x^{i})}$

to quantify the goodness of fit between the i-th annual block maximum, x^{i} , and the GEV distribution given by the parameters, μ^i , σ^i , and ξ^i

- We use a differential optimization algorithm to estimate the maximum likelihood parameters (MLEs) and examine how these estimates change with length of data
- We use an adaptive Markov chain Monte Carlo (MCMC) Bayesian calibration to obtain posterior distributions of each parameter





Stabilization of Parameter Estimates with Increase in Data Length. Indicates minimum length of tide record needed to reliably use MLEs for flood risk analysis for each candidate model. ST stabilizes with less data than the other candidate models. ξ is the most difficult parameter to estimate with shorter data records.

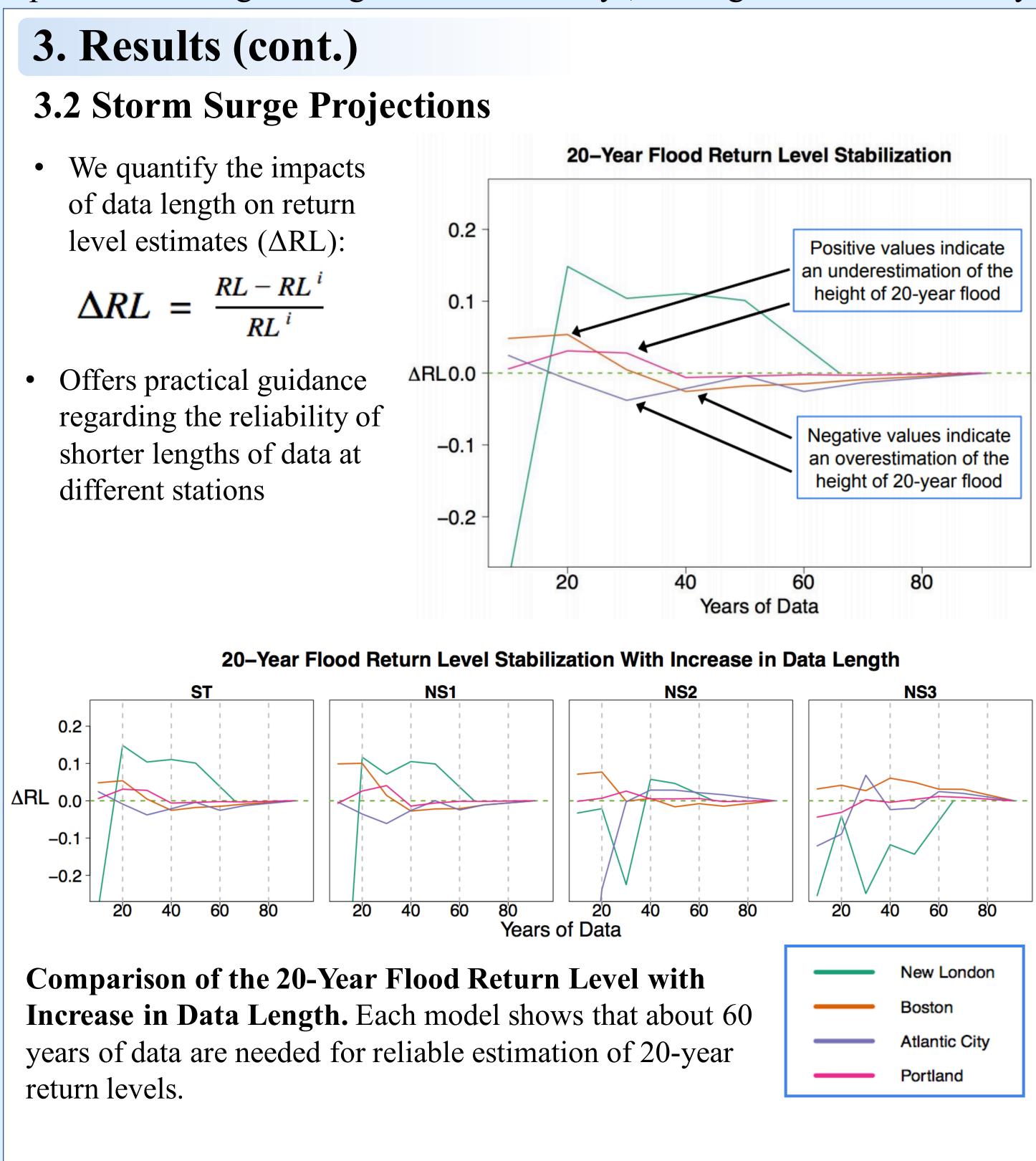
Wellesley College¹ Earth and Environmental Systems Institute², Geoscience Department³, Penn State University Department of Engineering and Public Policy³, Carnegie Mellon University

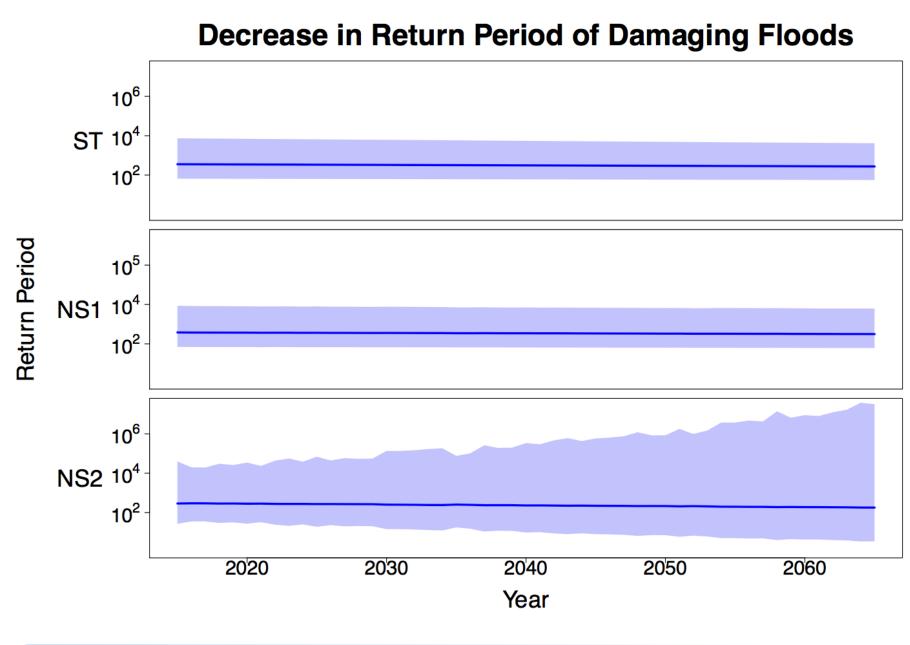
$$\Delta \sigma_0 = \left| \frac{\sigma_0^i - \sigma_0}{\sigma_0} \right|$$

of data length on return level estimates (ΔRL):

$$\Delta RL = \frac{RL - RL^{i}}{RL^{i}}$$

shorter lengths of data at different stations





4. Discussion

- recommended for flood frequency analysis
- increase
 - increase of future severity of storm surge

Acknowledgements

This project was supported by the National Science Foundation Research Experience for Undergraduates (REU) Program (AGS-1560339) and through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507.



Expected number of years between damaging floods in New London, CT. The blue line represents the median of the return period. The shaded region represents the 90% credible interval of the return period.

• With more free parameters in a model, a record of more than 60 years is

Damaging floods may increase with increase in global temperature in New London, CT and uncertainty of the frequency of these floods may also

• Mitigating the increase of global temperatures can reduce the predicted