Borg: an auto-adaptive many-objective evolutionary computing framework
D. Hadka and P. Reed
Evolutionary Computation (9 May 2013)
DOI: 10.1162/EVCO_a_00075
This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines ε-dominance, a measure of convergence speed named ε-progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites demonstrates Borg meets or exceeds six state of the art MOEAs on the majority of the tested problems. The performance for each test problem is evaluated using a 1,000 point Latin hypercube sampling of each algorithm's feasible parameterization space. The statistical performance of every sampled MOEA parameterization is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single algorithm; instead it represents a class of algorithms whose operators are adaptively selected based on the problem. The adaptive discovery of key operators is of particular importance for benchmarking how variation operators enhance search for complex many-objective problems.